TEP#3 - 2 模拟与数字

程飞

前情回顾

- 如何扩展键盘
 - 4x4 矩阵键盘
 - 利用并进串出移位寄存器
- •如何扩展OUTPUT接口
 - 利用串进并出移位寄存器(74HC595)
 - 译码器

模拟的世界

- B = 模拟 == 真实; // B 等于什么?
- // B = 1

• 数字化是进步还是妥协?

.....这好像是一节语文课

各种名词

- 什么是信号?
 - 一种表示消息的物理量,这种物理量可以被察觉或者通过其他方式感知
- 什么是信息(咨询/情报)?
 - 消息的子集
 - 用于消除不确定性
- 信号的种类:
 - 时间连续,取值连续:模拟信号
 - 时间连续, 取值离散
 - 时间离散,取值连续
 - 时间离散,取值离散:数字信号

模拟信号

- 模拟信号才是真正完美的
- 所有的非人造信号都是模拟信号
- 甚至连数字信号都是用模拟信号来模拟的
- 比较好理解的模拟信号:
 - 声音、亮度、温度、湿度、各种力等等
- 不太好理解的模拟信号:
 - 图像

数字信号

- 模拟信号辣么好. 为什么要数字化?
 - 模拟信号抗噪性能特别不好
 - 模拟信号不容易保存和传输
 - 不是模拟不好,而是人类科技不够先进
- 数字化是一种妥协式的进步
 - 数字信号的极致——二进制, 特别容易保存和传输
 - 数字信号容易加入纠错机制
 - 数字信号容易处理加工

问题:如何把模拟转换为数字

- 名词:采样 Sampling
- 步骤:
- 1. 将模拟物理信号转换为模拟电信号
- 2. 将模拟电信号转换为数字信号

如何转换为电信号

- 有关电学的几个量:
 - 电压
 - 电流
 - 电阻
 - 电容
- 换为电压信号来进行测量
 - 对于电流: $U_o = R \times I$
 - 对于电阻: $U_o = \frac{U \times R_1}{R_1 + R_2}$
- 转换为时间信号进行测量

电压转换为数字信号

- Analog to Digital Convert (ADC) 模数转换
- 转换公式:

•
$$Val = \frac{U_o}{U_{ref}} \times 2^n$$

- U。为需要转换的电压
- Uref参考电压
- n为量化的位数
- Val为转换后的数值

举例

• 假设使用光敏电阻测量光线强度(照度),在当前光照条件下,光敏电阻的阻值为200欧姆,使用如下电路进行采样,参考电压为5V,转换位数为10,转换后的数值是多少?

解答

•
$$U_o = \frac{U \times R_1}{R_1 + R_2} = \frac{5 * 200}{200 + 500} = 1.43$$

•
$$Val = \frac{U_o}{U_{ref}} \times 2^n = \frac{1.43}{5} \times 2^{10} = 293$$

• 反推:如果采样的只是293,是否可以得到当前 的照度?

电压转换为数字信号的原理

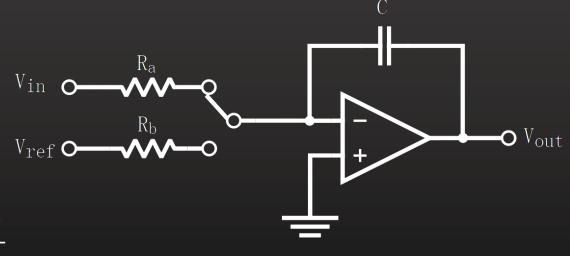
• 逐次逼近型ADC

•DAC = digital-to-analog converter

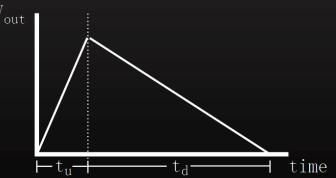
•EOC = end of conversion

•SAR = successive approximation register

•S/H = sample and hold circuit

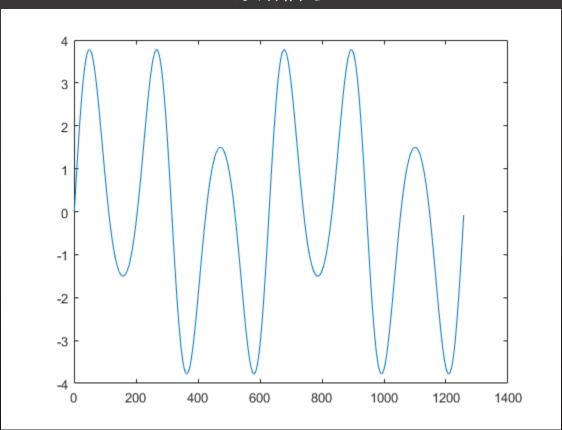

• V_{in} = input voltage

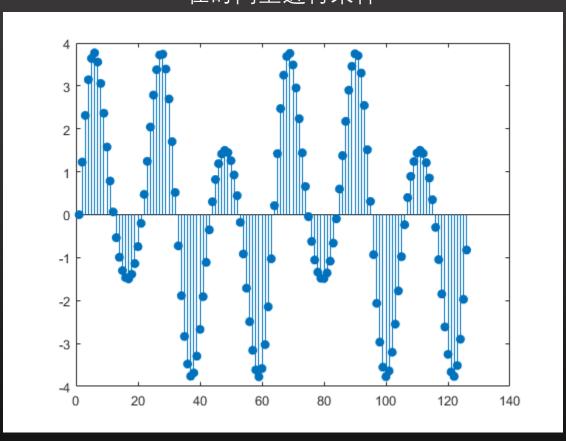
• V_{ref} = reference voltage



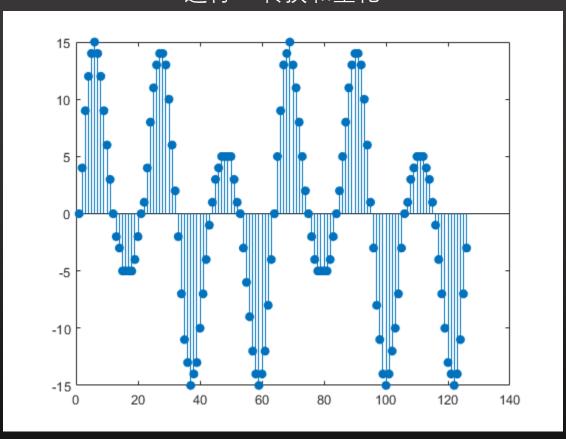
电压转换为数字信号的原理

• Integrating ADC 积分式模数转换器


$$V_{in} = -V_{ref}rac{R_a}{R_b}rac{t_d}{t_u}$$


对于时间信号的采样

- 当需要采样的信号不是一个单纯的状态量,而是一个和时间相关的函数,例如声音和图像,则需要对信号按照一定的时间间隔连续采样。
- 采样频率要大于等于信号最高频率分量的2倍。


原始信号

在时间上进行采样

进行AD转换和量化

一些后续问题

- 如果信号变化的幅度本身就很小怎么办?
 - 通过运算放大器将信号放大之后再接到ADC引脚上
- 模拟信号带有噪声怎么办?
 - 采样之前通过各种滤波器
 - 采样之后使用数字滤波

Arduino里如何使用AD转换器

- Arduino Uno和Nano均带有内置的AD转换器
- 转换位数为10位
- 最快转换速率大概是100uS,每秒钟可以转换 10000次

Arduino里如何使用AD转换器

语法:	analogReference(type);
功能:	设定参考电压的类型。
参数:	type: 参考电压的类型有: DEFAULT: 在 Nano 中是 5V; INTERNAL: 在 Nano 中是 1.1V; EXTERNAL: 通过AREF引脚设定参考电压,范围在0到5V之间。

语法:	analogRead(pin);
功能:	读取模拟引脚的AD转换数值。
参数:	pin:
	在 Nano 中,是 AO 到 A7。
返回:	AD转换数值(0到1023)。

今日任务

• 使用Tep #3接入光敏电阻和温敏电阻,测量环境 光线和温度的变化。